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Elucidating the microscopic mechanisms responsible for the charge density wave (CDW) instability of
the AV3Sb5 (A = Cs, K, Rb) family of kagome metals is critical for understanding their unique properties,
including superconductivity. In these compounds, distinct CDW phases with wave vectors at the M and L
points are energetically favorable, opening the possibility of tuning the type of CDW order by appropriate
external parameters. Here, we shed light on the CDW landscape of CsV3Sb5 via a combination of first-principles
calculations and phenomenology, which consists of extracting the coefficients of the CDW Landau free-energy
expansion from density functional theory. We find that while the main structural distortions of the kagome lattice
in the staggered tri-hexagonal CDW phase are along the nearest-neighbor V–V bonds, distortions associated
with the Sb ions play a defining role in the energy gain in this and all other CDW states. Moreover, the coupling
between ionic displacements from different unit cells is small, thus explaining the existence of multiple CDW
instabilities with different modulations along the c axis. We also investigate how pressure and temperature impact
the CDW phase of CsV3Sb5. Increasing pressure does not change the staggered tri-hexagonal CDW ground state,
even though the M-point CDW instability disappears before the L-point one, a behavior that we attribute to the
large nonlinear coupling between the order parameters. Upon changing the temperature, we find a narrow regime
in which another transition can take place, toward a tri-hexagonal star-of-David CDW phase. We discuss the
implications of our results by comparing them with experiments on this compound.
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I. INTRODUCTION

The family of metallic kagome compounds AV3Sb5, with
A = K, Rb, Cs, exhibit pressure-tunable superconductivity
with Tc ranging from 2 to 8 K [1–4], coexisting with a
charge density wave (CDW) order which sets in at 80–100 K
[5–10]. Despite concerted experimental and theoretical effort
[11,12], a complete understanding of how these electronic
states change as the lattice and electronic structures are mod-
ified by pressure [4,13,14], uniaxial strain [15], and doping
[16] remains elusive.

Experimentally, x-ray diffraction studies at zero applied
pressure show that the charge-ordered state induces a unit
cell doubling along the in-plane a and b axes, and either a
doubling or a quadrupling along the c axis [3,6,17]. However,
the exact nature of the symmetries broken by the CDW in
AV3Sb5 as a function of temperature and pressure is still un-
der investigation [18–20]. For instance, several experimental
results have indicated that, upon application of pressure, there
is a transition between different CDW ground states, which
is indirectly manifested in the double-peak structure of the
superconducting dome [13,21,22]. Different CDW states have
also been reported as a function of temperature and doping
[17,18,23,24]. Moreover, experiments have reported signa-
tures of threefold rotational symmetry breaking either inside
the CDW phase or at its onset [25–29]. Finally, time-reversal
symmetry breaking has been reported to coincide with the
CDW transition temperature by muon spin relaxation (μSR)

experiments [30–32], whereas Kerr rotation measurements
have given conflicting results [29,33,34].

Theoretically, the proximity of M-point van Hove sin-
gularities to the Fermi level [35] has led to the proposal
that the CDW is a correlation-driven instability [12,36–40].
On the other hand, the softening of several phonon modes
along the M-L line, as seen by density functional theory
(DFT) calculations [20,39,41–43], indicates the importance
of electron-phonon coupling in promoting the CDW phase.
Time-reversal symmetry breaking has been interpreted in
terms of loop-current patterns arising from a so-called imag-
inary CDW (iCDW) instability [37,38,44–46]. Importantly,
even a pure iCDW instability is expected to generally induce
a “real” CDW, making the investigation of the latter important
to also shed light on the possible loop-current patterns that can
be established in these systems.

Therefore, elucidating the role played by structural and
electronic degrees of freedom, particularly those not associ-
ated with the V ions at the kagome layer, is important and
the subject of ongoing research [43,47,48]. More specifically,
predicting the evolution of the CDW with pressure and other
tuning parameters is of critical importance to shed light on
the microscopic mechanism responsible for the CDW phase,
and thus to gain insight into the properties exhibited by this
materials class.

In this paper, using first-principles DFT in conjunction
with a phenomenological Landau free-energy model, we in-
vestigate the role of the Sb degrees of freedom on the CDW
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instability of CsV3Sb5, as well as the evolution of the latter
as a function of both pressure and temperature. DFT has
been shown to correctly predict the CDW instabilities in this
system [20,41–43], whose electronic correlations do not seem
to be strong enough to change the lattice energetics signifi-
cantly. At the same time, phenomenological Landau models
for the CDW instabilities at the M and L points have been
analyzed to reveal the possible CDW phase diagrams in these
compounds [37,39].

Here, we combine these two approaches by extracting
the free-energy coefficients from first-principles calculations,
which allows us to “freeze” some degrees of freedom and
focus on the contributions arising from different ions. We not
only find that a fourth-order Landau free-energy expansion
is able to capture the energy landscape of CsV3Sb5 with
respect to its charge-ordering behavior towards a staggered
tri-hexagonal CDW phase, but also that the distortions of the
V bonds alone are not enough to account for the energy gain
in the CDW phase. In particular, our calculations show that
the apical Sb displacements are significantly more important
than previously assumed for the stabilization of any of the
stable CDW phases, which may have important consequences
for the mechanism of the CDW. Interestingly, the relative
distortions between ions of different unit cells give only a
small contribution to the CDW energetics, which addresses
why there are multiple CDW instabilities along the M-L line
in momentum space.

We take advantage of the Landau free energy expansion
to establish how the CDW phase evolves with pressure and
temperature. We show that there is a rather narrow parameter
regime in the onset of two well-separated CDW transitions
(corresponding in our calculations to the staggered tri-
hexagonal and tri-hexagonal star-of-David CDW phases) as
a function of temperature, as suggested by some experiments
[17,18,31,49]. This result indicates that another ordered state
not captured by DFT with the generalized gradient approx-
imation (GGA), such as time-reversal symmetry-breaking
iCDW order, may be necessary to account for two different
transition temperatures in CsV3Sb5. By performing our calcu-
lations in the presence of hydrostatic pressure, we find that the
staggered tri-hexagonal CDW ground state does not change,
despite the fact that the M-point instability is absent at high
enough pressures. Combined with the pressure dependence
of the Landau coefficients, this suggests that the nonlinear
coupling between the two CDW order parameters with wave
vectors at the M and L points is essential to drive the CDW
instability in the kagome metals.

This paper is organized as follows: In Sec. II, we give an
overview of our methods. In Sec. III A, we present the Landau
free energy, and its coefficients as predicted from DFT. In
Sec. III B, we elucidate the effect of the apical Sb ion on
the phase stability of CDW. We discuss the effect of pressure
in Sec. III C, and draw finite-temperature phase diagrams in
Sec. III D. We conclude with a summary and discussions in
Sec. IV.

II. METHODS

All DFT calculations were performed using projector aug-
mented waves (PAWs) as implemented in the Vienna Ab

initio simulation package (VASP) version 5.4.4 [50–52]. We
used the PBEsol exchange-correlation functional, with va-
lence configurations of 5s25p66s1, 3s23p63d44s1, and 5s25p3

corresponding to Cs, V, and Sb, respectively. Lattice pa-
rameters were found to be converged to within 0.001
Å using a plane-wave cutoff energy of 450 eV, a �-
centered Monkhorst-Pack k-point mesh of 20×20×10, and
a second-order Methfessel-Paxton smearing parameter of
10 meV.

Using DFT and the Landau free energy derived in
Ref. [39], we explore the CDW behavior of CsV3Sb5 at vari-
ous pressures. The AV3Sb5 compounds are predicted to have
phonon instabilities at the M and L points of their hexagonal
Brillouin zones [15,53]. We use the eigenvectors of the force
constant matrix (FCM) corresponding to the unstable modes
that transform as irreducible representations (irreps) M+

1 and
L−

2 as a basis, and use their amplitudes as the order parameter
components Mi and Li, respectively. At each pressure, the
free-energy coefficients are found by freezing in selected com-
binations of the order parameters at various amplitudes and
performing a least-squares fit to the data set. We confirmed
that the signs and magnitudes of these coefficients do not
qualitatively change when coefficients beyond fourth order are
included in the fit.

III. RESULTS

A. Electronic structure and free-energy coefficients
at zero applied pressure and temperature

At room temperature and ambient pressure, CsV3Sb5

adopts the P6/mmm (No. 191) space group, with Cs occu-
pying the 1a Wyckoff site, V the 3g site, and Sb the 4h and
1b sites. Using DFT structural relaxation, we predict lattice
parameters a = 5.424 Å and c = 9.368 Å, as well as a z
coordinate for the apical Sb at the 4h(1/3, 2/3, z) site with
z = 0.740 in fractional coordinates. We find phonon in-
stabilities that lead to CDW-driven structural distortions
transforming as the M+

1 and L−
2 irreducible representations of

the space group, in agreement with earlier reports [39,41].
There are three distinct M points and three distinct L points

in the hexagonal Brillouin zone, as shown in Fig. 1, which
we denote as kMi and kLi. The M-point wave vectors have
zero z (out-of-plane) component, and they correspond to the
face centers of the hexagonal Brillouin zone. kLi have the
same in-plane components as kMi, but they also have a z
component of π/c, which places them at the edge centers
of the hexagon on the top or bottom faces, as illustrated in
Fig. 1. The different components of the M+

1 and L−
2 CDW

order parameters correspond to displacement patterns with
different wave vectors, such that the ith components Mi and
Li have the wave vectors kMi and kLi, respectively.

While for an isolated kagome plane there are only two
types of in-plane triple-Q charge-order patterns (called tri-
hexagonal and star of David), there are several different
possibilities for stacking them between consecutive layers.
They correspond to distinct superpositions of the three Mi

and three Li CDW components, giving rise to a large number
of different CDW phases with distinct symmetries [39]. In
the remainder of this paper, we denote the phases reached
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FIG. 1. (a) 2×2×2 unit cells of the high-temperature P6/mmm
phase of CsV3Sb5 along the c axis. (b) The same cell when viewed
along the in-plane b axis with the Wyckoff letters labeling each ionic
site. (c) The P6/mmm Brillouin zone with high-symmetry points �,
M, and L labeled. Translucent arrows indicate the position of other
vectors in the stars of M and L.

by different directions in parameter space using the nota-
tion (M1M2M3) + (L1L2L3), similar to the one employed in
Ref. [39]. As explained above, Mi and Li refer to the ampli-
tude of each M+

1 and L−
2 order parameter, respectively. For

distortions where all of the M or L order parameters have zero
amplitude, we use the notations (L1L2L3) and (M1M2M3),
respectively. Illustrations of the phases discussed in this study
are shown in Fig. 2. In the notation used in this figure, we
take all M and L values to be positive, with negative values
denoted by an overbar. Note that, for each phase, multiple
equal-energy domains that are equivalent to each other up
to a translation or rotation can be obtained from combina-

FIG. 2. Illustrations of the undistorted kagome lattice and a se-
lection of structural phases that can be reached through different
directions in parameter space. The V networks are shown for two
subsequent layers stacked along the z axis (out of the page). The
bonds shown in these panels denote relative displacement patterns.

tions of order parameter components that preserve the signs
of the products M1×M2×M3 and L1×L2×L3. For example,
E (MMM ) ≡ E (MMM ). We do not discuss different domains
of each phase further since they are of no consequence in a
single-domain system.

Following Ref. [39] (see also Ref. [37]), the Landau free
energy in terms of Mi and Li takes the form of

Ftot = FM + FL + FML, (1)

where

FM = αM

2
M2 + γM

3
M1M2M3 + uM

4
M4

+ λM

4

(
M2

1 M2
2 + M2

1 M2
3 + M2

2 M2
3

)
, (2)

FL = αL

2
L2 + uL

4
L4 + λL

4

(
L2

1L2
2 + L2

1L2
3 + L2

2L2
3

)
, (3)

and

FML = γML

3
(M1L2L3 + L1M2L3 + L1L2M3)

+ λ
(1)
ML

4
(M1M2L1L2 + M1M3L1L3 + M2M3L2L3)

+ λ
(2)
ML

4

(
M2

1 L2
1 + M2

2 L2
2 + M2

3 L2
3

) + λ
(3)
ML

4
M2L2. (4)

Here, we defined M2 = M2
1 + M2

2 + M2
3 and M4 = (M2)2,

with L2 and L4 defined analogously. The form of this free
energy is determined by symmetry, and it is the most gen-
eral fourth-order polynomial of Li and Mi that transforms
as a scalar under the symmetry operations of space group
P6/mmm. A necessary, but not sufficient, condition for a term
to appear in this expansion is that its total wave vector is
zero, so that the free energy is invariant under lattice trans-
lations. The sum of the three M-point wave vectors is zero
modulo a reciprocal lattice vector (kM1 + kM2 + kM3 = 0),
and hence the trilinear term γMM1M2M3 is allowed [54].
However, there is no trilinear term proportional to L1L2L3

because kL1 + kL2 + kL3 �= 0. Accordingly, there are trilinear
terms between two Li and one Mi component proportional
to M1L2L3 because kM1 + kL2 + kL3 = 0. The Landau coef-
ficients (greek letters and u) in Eq. (4) are material-specific
coefficients that can be obtained from DFT. We calculate
these quantities by performing a simultaneous least-squares
fit of the total energy extracted from DFT as a function of
a selected combination of order parameters [55]. In practice,
we take the eigenvectors associated with each of the unstable
eigenvalues of the force constant matrix that transform as M+

1
and L−

2 as the distortions associated with the M- and L-point
order parameters, respectively. Then, we use DFT to calculate
the energy associated with combinations of these distortions
with various amplitudes and frozen into a 2×2×2 supercell
commensurate with the stars of both the M and L points in
reciprocal space. The coefficients obtained from these calcu-
lations at different values of hydrostatic pressure are shown in
Table I.

The quadratic terms αL and αM correspond to eigenvalues
of the force constant matrix. Since the dynamical matrix is
given by the force constant matrix scaled by diagonal mass
matrices [56], they are thus proportional to the square of
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TABLE I. Coefficients of the Landau free energy corresponding to Eqs. (2), (3), and (4) obtained from fits to DFT data for different
applied pressures. The units for all second-order (α), third-order (γ ), and fourth-order (u and λ) coefficients are eV/Å2, eV/Å3, and eV/Å4,
respectively, defined per 2×2×2 (eight formula unit) supercell, which is the smallest supercell commensurate with all three wave vectors in
the stars of M and L.

Pressure αM αL γM γML uM uL λM λL λ
(1)
ML λ

(2)
ML λ

(3)
ML

(GPa) (eV/Å2) (eV/Å2) (eV/Å3) (eV/Å3) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4) (eV/Å4)

0.00 −2.53 −2.92 −22.16 −24.15 76.43 89.93 −137.67 −194.47 347.73 332.28 24.20
0.80 −1.78 −2.42 −22.88 −30.15 73.05 77.68 −128.01 −127.43 347.38 341.12 29.53
1.74 −1.00 −2.21 −17.57 −27.78 52.87 74.91 −94.82 −122.71 244.04 324.52 24.79
2.50 −0.53 −1.31 −10.60 −32.66 70.71 82.46 −118.16 −138.51 266.06 333.90 12.58
3.50 0.51 −0.89 −7.06 −31.62 16.01 110.61 61.26 −203.07 98.22 353.52 3.45
5.00 1.22 −0.43 3.56 −20.41 101.42 181.22 −64.76 −279.73 400.84 639.46 −32.88

the frequencies of the unstable phonon modes at L and M,
respectively. The results in Table I show that at 3.50 GPa, the
M+

1 CDW instability has disappeared, whereas the L−
2 CDW

instability is suppressed at approximately 5.00–6.50 GPa. We
note that the exact value of pressure where this suppression
occurs is hard to pinpoint from DFT, as it also depends on the
choice of exchange-correlation functional and van der Waals
corrections. Nevertheless, the qualitative trends are expected
to be reliable [21].

The “pure M” (γM) and “mixed irrep” (γML) trilinear cou-
pling coefficients are significant at almost all pressures, and
hence play an important role in determining the structure
of the energy surface. Also of interest are the biquadratic
terms λM and λL, which take negative values at all pressures
explored. While other fourth-order terms ensure positive cur-
vature at large displacement amplitudes that keep the free
energy bounded, and the third-order terms are dominant in
CsV3Sb5, λL and λM could play an important role in shap-
ing the competition between CDW phases in other kagome
systems, where their magnitude could be larger.

We show the energy contour plots along various cuts of
the six-dimensional phase space (M1, M2, M3, L1, L2, L3) in
Fig. 3. In order to assess whether the fourth-order expansion
is sufficient to capture the topography of the energy landscape,
we show the energies calculated using the Landau free-energy
expression and the coefficients from Table I on the top panels
of the figure, whereas the bottom panels display the energies
as obtained directly from DFT. The comparison reveals good
qualitative and quantitative agreement between the fit and
DFT, with the fitted free energy capable of capturing all local
minima, as well as their relative amplitudes and energies.
This suggests that a fourth-order free-energy expression is
sufficient to capture the energetics of the CDW degrees of
freedom. At zero temperature and zero applied pressure, a
minimization of the free energy predicts the equilibrium phase
to be the (M00) + (0LL) (staggered tri-hexagonal) phase,
in agreement with our DFT structural relaxations, which
take into account strain degrees of freedom as well. Earlier
first-principles studies also reported the same ground-state
structure from structural relaxations [41,42].

These energy surfaces provide insights about various un-
usual features of the coupling between the CDW order
parameters. Figure 3(a) is very asymmetric as a function of
M1, which is solely due to the trilinear coupling term γML.
This term breaks the symmetry between ∓M1 in this figure,

and favors M1 > 0, which amounts to breaking the degeneracy
between the staggered star-of-David phase, (M00) + (0LL),
and the staggered tri-hexagonal phase, (M00) + (0LL), by
favoring the latter. Another interesting feature, visible in
Fig. 3(b), is that the pure (MMM ) phase (the minimum on the
horizontal axis) is lower in energy than the mixed (MMM ) +
(LLL) phase (the minimum slightly off of the vertical axis),
despite the latter being a subgroup of the former. This is due to
an interplay between third-order and fourth-order terms in the
free-energy expansion: The (MMM ) phase has a considerable
energy gain from the pure trilinear coupling γM , whereas
the (MMM ) + (LLL) phase only has a small gain from the
mixed trilinear coupling γML because of the small amplitude
of M. A larger value of M in the (MMM ) + (LLL) phase is
disfavored because of the fourth-order couplings λ

(i)
ML, which

results in the relative stability of the (MMM ) phase over
(MMM ) + (LLL).

The similarity between Figs. 3(a) and 3(c) is also strik-
ing. For Fig. 3(c), where only CDW orders at the M point
are considered, the γM trilinear term drives the minimum
of the free energy to a point in phase space where |M1| =
|M2| = |M3|, regardless of the sign of γM , which only deter-
mines whether the star-of-David (M < 0) or the tri-hexagonal
(M > 0) phase is favored [39]. Both of these phases retain the
sixfold rotational symmetry in their point group, which would
be broken if any of the |Mi| were not equal to the others.
However, Fig. 3(a) shows an energy minimum very close to
|M1| = |L2| = |L3|, despite the fact that no similar symmetry
conditions or constraints are enforced by the form of the free
energy.

We explored the structural details of the tri-hexagonal
CDW (M00) + (0LL) phase, with space group Fmmm and
which is the global minimum of the free energy, using DFT
to relax all structural degrees of freedom in it. We then used
ISODISTORT [57,58] to decompose the distortions from the
parent kagome structure in terms of the irreps of space group
P6/mmm. The relaxed structure hosts multiple distortions
with different irreps, including �-point strain modes. These
uniform distortions are induced by their coupling to the L−

2
and M+

1 CDW distortions. For simplicity, we ignore them and
focus only on the unstable L−

2 and M+
1 modes. We find that

the total distortion can indeed be described by a superposition
of L−

2 and M+
1 irreps of near-equal magnitudes (within 1% at

zero pressure; see Fig. 6), which primarily takes the form of
distortions of the V and Sb ions as seen from the decompo-
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(a) (b) (c)

FIG. 3. Energy surfaces along specific cuts in the six-dimensional phase space (M1, M2, M3, L1, L2, L3) obtained from the Landau
free-energy fit (top panels) and from DFT (bottom panels). Order parameter subspaces are spanned by (a) (M1, M2 = M3 = 0) and
(L1 = 0, L2 = L3), (b) (M1 = M2 = M3) and (L1 = L2 = L3), and (c) (M1, M2 = M3) and (L1 = L2 = L3 = 0).

sition of each irrep into separate ionic displacements (Fig. 4,
discussed further in Sec. III B). Note that neither do the L−

2 or
M+

1 irreps accommodate distortions of the Sb ions located in
the kagome plane (Wyckoff site 1b in space group P6/mmm),
nor are there any degrees of freedom in the Wyckoff sites cor-
responding to those ions in the (M00) + (0LL) CDW phase
(sites 4a, 4b, and 8e of space group Fmmm). This means that
all Sb distortions in Fig. 4 refer to the “apical” (Wyckoff site
4h in P6/mmm) Sb ions located above and below the kagome
plane.

Taken together, these results suggest that, while the cou-
pling between the M-point and L-point CDWs plays an
important role in determining the global energy minimum, it
is intralayer interactions between ions in the same vanadium
kagome sublattice, as well as their coupling to neighboring
Sb ions, that dominates the behavior of the energy surface,
with little coupling to layers in neighboring unit cells. This is
supported by the similarity of pure-L and pure-M coefficients
in Table I at 0.0 GPa, especially the α terms, which are
proportional to the squared phonon frequencies and are within
about 15% of each other. Since these values are so close, we
conclude that the vibrational frequencies are fairly agnostic
as to whether their associated distortions are in phase or out
of phase with respect to neighboring kagome layers, again
supporting a physical picture of weak interaction between
nearest-neighbor unit cells.

While this interpretation is consistent with the layered
crystal structure of AV3Sb5 and is also in line with many
studies that assume well-isolated vanadium kagome layers

that are stacked with some space-filling ions in between, in
the following sections we argue that ions other than vanadium
are also important for the CDW phase.

B. Importance of apical Sb displacement

While much of the theoretical work on AV3Sb5 has focused
on the role of the V ions that form the kagome lattice, there is
a growing body of evidence that points to the important role
of the Sb ions [16,43,47,48]. Importantly, the pz orbitals of
both types of Sb anions (in plane and apical) together give rise
to a �-centered Fermi surface pocket [16,43,47]. Moreover,
certain types of imaginary CDW or loop-current phases are
predicted to induce magnetic moments on the in-plane Sb
ions [46]. As for the apical Sb ions, constrained random phase
approximation calculations report that they give an important
contribution to the correlation strength in CsV3Sb5 [47]. Fi-
nally, as discussed in the previous section, both L and M CDW
order parameters involve displacements of the apical Sb ions,
while the planar Sb ions remain fixed by symmetry in many
CDW phases.

In addition to their role in the electronic structure, the
Sb ions can also be important in determining the relative
stability of different CDW phases. Indeed, while the ionic
displacements associated with the unstable M+

1 and L−
2 modes

obtained from phonon calculations are primarily dominated
by the V ions, decomposition of FCM eigenvectors and the
relaxed structures suggests that the displacements of other
ions may play an important role in the energetics of the
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(a)

(b)

FIG. 4. (a) Norm squared magnitude of the displacements as-
sociated with the eigenvectors of the force constant matrix that
correspond to the M+

1 and L−
2 CDW instabilities decomposed by

ionic species. The total magnitude is normalized to 1. (b) Total ampli-
tude of the ionic displacements associated with the order parameter
components L and M for the (M00) + (0LL) phase obtained from
DFT and calculated with the ISODISTORT program.

CDW phase. In Fig. 4(a), we plot the components of the
FCM eigenvectors of the unstable M+

1 and L−
2 modes. The

FCM eigenvectors are conceptually similar to the dynamical
matrix eigenvectors, which give the displacement pattern of
phonon modes when multiplied by the square roots of the
atomic masses. However, for unstable lattice modes, the FCM
eigenvectors give a more precise description of the displace-
ment pattern since they do not depend on the masses of the
atoms. The FCM eigenvector of both M+

1 and L−
2 modes at

zero pressure has the largest contribution from the V ions,
with Sb atoms having a smaller total displacement despite the
fact that there is a larger number of Sb ions being displaced.
Under pressure, the most significant change is an increase in
the out-of-plane Cs ion displacement in the L−

2 mode, but the
Sb contribution remains relatively flat.

The FCM eigenvectors only contain information about
the nature of the instabilities in harmonic order, and cannot
capture the effects of the higher-order terms in the lattice
Hamiltonian. As a result, they cannot explain which ions’
displacements lead to the largest energy gain, because the
higher-order interactions can give rise to a different ionic
displacement pattern when the lattice is relaxed. In order to

evaluate this possibility, in Fig. 4(b) we plot the total ampli-
tudes of ionic displacements in the staggered tri-hexagonal
(M00) + (0LL) phase decomposed into different irreps and
ions. We note that the Sb displacements with L−

2 character
in the relaxed structure are as large as the V displacements
with M+

1 character, and therefore, Sb displacements may be
responsible for a significant energy gain in the CDW phase.

To investigate the importance of the degrees of freedom
other than V displacements, we perform a series of DFT
calculations, the results of which are shown in Fig. 5. Each
panel of Fig. 5 shows the energy calculated for a different
CDW phase [(M00), (MMM ), etc.] as a function of ionic
displacements. For each phase, we consider two different
displacement patterns: The black solid lines correspond to
distortions according to the FCM eigenvectors, and thus in-
clude a displacement of Sb and Cs ions in addition to the V
ions. The blue solid lines, on the other hand, are the energies
when only the V ions are displaced according to the same
pattern, but the positions of the Cs and Sb ions are kept
fixed. In every case, we find that that black curve goes much
deeper than the blue one. In other words, even though there
is an energy gain even when only V ions are displaced, this
energy gain is much less than that obtained when all ions are
displaced. Thus, the greatest share of the free-energy change
is associated with degrees of freedom other than the vanadium
displacement. These other degrees of freedom are not unstable
by themselves; however, it is their interactions with the V
displacements (i.e., the off-diagonal elements of the FCM)
that lead to these large energy gains.

In order to further learn how these other degrees of freedom
contribute to free energy, we also performed constrained ionic
relaxations in DFT. In these calculations, the ionic positions
are allowed to relax to the minimum energy configuration
that preserves symmetry. As the starting point, we used the
minimum of each V–V-only distortion pattern (i.e., the min-
imum of the blue curves) and performed four different types
of relaxations while keeping certain ions’ positions fixed. The
results of these calculations are shown by different symbols in
Fig. 5. Keeping the Cs and Sb ions fixed while allowing the
V ions to relax (red stars) gives rise to a marginal energy gain
and additional displacements compared to the minimum of the
blue curve. This indicates that, in this relaxed structure, the V
displacements differ very little from the pattern obtained from
the force constant matrix eigenvectors. Relaxing both the V
and the Cs ions (green squares) makes almost no difference
either, implying that the Cs ions have almost no effect in the
stabilization of the CDW phase. Hence, we conclude that any
difference between the CDW behavior in CsV3Sb5, RbV3Sb5,
and KV3Sb5 is likely due to the size effects of the different
alkali metals, which change the lattice parameter and hence
the electronic structure, and not directly due to steric effects
related with the alkali-metal displacements.

Unlike the Cs ions, the relaxation of the Sb ions make a
significant difference in the amount of energy gained. Relax-
ing both the V and the Sb ions (brown triangles) leads to
both an energy and a mode amplitude that are close to the
minimum of the curve where all ions are displaced according
to the FCM eigenvector. Therefore, while the V-ion degrees
of freedom by themselves can explain the presence of the
CDW instability and qualitatively capture the ground-state
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FIG. 5. Comparison of the effects of different ionic degrees of freedom on the energy surface for various CDW distortion patterns. The
black lines overlaid with square markers correspond to the energy change associated with a distortion constructed from the force-constant
matrix (FCM) eigenvectors associated with the indicated direction in parameter space. These eigenvectors involve displacement of not only
V, but also of apical (1b) Sb, and of Cs (for L−

2 order parameters only). Blue lines overlaid with inverted triangles correspond to distortions
constructed using only V-ion displacements, leaving all other degrees of freedom fixed. Using the minimum of this blue curve as initial
conditions, the results of constrained structural relaxations are shown as additional symbols. Red stars correspond to letting only V ions relax
further, while green squares correspond to letting V and Cs ions relax. Brown triangles correspond to letting V and Sb ions relax, and black
crosses to allowing all internal degrees of freedom to relax. Note that for all directions in the CDW parameter space spanned by the M and
L order parameter components, the magnitudes of M and L were selected to be equal. While these directions are useful for illustrating the
energy surfaces, the magnitudes of L and M need not be equal in general, and the values of L and M which minimize the total energy do not
necessarily lie along a direction where |M| = |L|.

symmetry, the displacements of the Sb ions are essential in
obtaining the large energy gain that stabilizes the CDW phase
at ∼80 K. Finally, also relaxing Cs together with V and Sb
(black crosses) makes very little difference, confirming the
unimportance of Cs displacements.

C. Effect of hydrostatic pressure

CsV3Sb5 exhibits a rich phase diagram under hydrostatic
pressure, where the CDW order is suppressed around 2 GPa,
while superconductivity displays a double-peak dome behav-
ior when it coexists with CDW [4,9,13,15,21,59,60]. In this
section, we study the evolution of the CDW under pressure
by focusing on the coefficients of the Landau free energy to
predict any change in the CDW ground state of the system.

In Table I, we show the values of the free energy coeffi-
cients for CsV3Sb5 under pressure. As the pressure increases,
both quadratic coefficients αM and αL become less negative,
which is consistent with the disappearance of the CDW under
pressure in the experiments discussed above. Interestingly, αM

changes sign and becomes positive while αL remains negative,
indicating that, in the higher-pressure regime, it is the L insta-
bility that drives the CDW transition. However, as shown in
Fig. 6, the M+

1 distortions continue to contribute significantly
to the CDW phase, even in this regime.

We also find large changes in the the third-order coeffi-
cients γM and γML, with γM becoming less negative much
faster than γML with increasing pressure, and even changing
sign near 5.0 GPa. Despite these changes, the (M00) + (0LL)
CDW phase is predicted by both DFT and the fitted free-
energy function to be the lowest-enthalpy structure throughout
the entire pressure range, as seen in Fig. 7(a). However, the en-
ergy difference between the three lowest-energy CDW phases
shown in Fig. 7(a) is typically of the order of a few meV per
formula unit, which suggests that the vibrational entropy of
the ions, which is not taken into account in our calculations,
can be large enough to lead to a different ground state or even
a phase transition under pressure. We also note that the critical
pressure we predict for the complete suppression of the CDW,
P = 6.5 GPa, which we reported previously in Ref. [21], is
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FIG. 6. Total amplitude of the order parameter components L and
M for the (M00) + (0LL) phase relaxed with DFT. At each pressure,
the ISODISTORT program was used to decompose the distortion of the
relaxed cell with respect to the high-symmetry kagome structure into
contributions from the L−

2 and M+
1 irreps. Since two equivalent and

nonzero L order parameter components appear in the (M00) + (0LL)
phase, the value for L−

2 plotted in the figure is equal to the total value
reported by ISODISTORT scaled by 1√

2
.

higher than the experimentally reported value, which may in
large part be due to the systematic errors in DFT and GGA
approximations. The trends in the coefficients, which do not
sensitively depend on the equilibrium lattice constants, are
nevertheless reliable.

As discussed in Sec. III A, the similarity between αM and
αL can be interpreted as a measure of the weakness of the
coupling between the displacements of ions in neighboring
unit cells along the c axis. Moreover, the CDW structural
distortion patterns associated with the unstable L−

2 modes
are nearly the same as those associated with the M+

1 modes,
except that in the L−

2 mode each kagome layer is out of phase
from its neighbors [39]. Thus, if the frequencies of the L−

2
and M+

1 phonon modes are close in value, it suggests that
the frequencies are relatively indifferent to the relative phases
between each layer. Since M and L are the two end points of
the U line in reciprocal space parametrized by ( π

a , π
a , qz ), the

similarity of αM and αL can be used as a rough measure of the
sensitivity of a phonon frequency to qz, which modulates the
phase relation between neighboring layers. Figure 7(b) shows
how the relative difference between the quadratic coefficients
of the M and L modes, �α = αL−αM

αL
, changes as a function

of pressure. αM becomes positive faster than αL, and as the
latter approaches zero, �α increases sharply. This steady in-
crease with pressure indicates an increased importance of the
interlayer coupling under pressure. This may be due to the
decrease of the out-of-plane c axis, enhancing the possibility
that the leading instability transforms like an irrep associated
with another wave vector on the U line.

We also find that the nonvanadium degrees of freedom
discussed in Sec. III B play a critical role in the evolution
of the structural instability with pressure. Figure 7(c) shows
the α′

M and α′
L values calculated using the distortion pat-

(a)

(b)

(c)

FIG. 7. (a) The difference in enthalpy per formula unit between
each of the indicated CDW phases and the undistorted kagome lattice
as a function of pressure. Only the three lowest-enthalpy phases
predicted by DFT are shown. (b) Quadratic (left axis) coefficients
of the Landau free energy and �α = αL−αM

αL
(right axis) as a function

of pressure. (c) Pressure dependence of the coefficients α′
M and α′

L .
They correspond to the αM and αL of Eqs. (2) and (3) calculated for
a distortion pattern transforming as M+

1 and L−
2 , respectively, but in-

volving only the displacements of the V ions along nearest-neighbor
V–V bonds.

terns associated only with V displacements rather than the
eigenvectors of the force constant matrix. These are not only
far less negative than the actual α values show in Fig. 7(b),
but also become positive at a much smaller pressure. As a
result, in the absence of Sb and Cs displacements, the CDW
instabilities are greatly weakened, in line with the results in
Fig. 5. Thus, the displacements of Sb ions play an important
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role not only in the stability of the CDW phase of CsV3Sb5 at
zero pressure, but also in controlling how the CDW instability
evolves with pressure.

D. Finite-temperature phase diagrams

While the DFT analysis of the CDW energetics is valid
only at T = 0, the Landau free-energy expansion allows us
to also investigate the fate of the CDW transitions at finite
temperatures. The close proximity between different CDW
ground states at T = 0, as shown, for instance, in Fig. 7,
suggests that multiple CDW transitions can take place as a
function of temperature. While such a scenario was explored
phenomenologically in Ref. [39] using the same free energy
as in Eq. (1), our approach gives the Landau parameters of
CsV3Sb5 directly from DFT. Experimentally, probes such as
Raman spectroscopy [18], μSR [31,61], and elastoresistance
[28] report signatures consistent with multiple CDW tran-
sitions as temperature is changed, which may also involve
time-reversal and threefold rotational symmetry breaking.

In order to render the problem tractable, and follow-
ing the spirit of a Landau expansion, we assume that only
the quadratic coefficients αM and αL are temperature de-
pendent. Thus, we define αM ≡ α0

M (TM − T )/TM and αL ≡
α0

L(TL − T )/TL, and set the zero-temperature quadratic co-
efficients α0

M and α0
L equal to the αM and αL predicted by

DFT, while treating the bare critical temperatures TM and TL

as free parameters. For all third- and fourth-order coefficients,
we use the values extracted from DFT at each pressure. Be-
cause, in general, α0

M �= α0
L, the temperature phase diagrams

depend on the absolute values of both TM and TL, and not
just on their difference. It is therefore convenient to define the
average transition temperature T0 ≡ (TM + TL )/2, which sets
the temperature scale of the transition, and the dimensionless
temperature difference δτ ≡ (TM − TL )/(TM + TL ), such that
TM = T0(1 + δτ ) and TL = T0(1 − δτ ). For concreteness, we
consider the range 0.60 < TM/TL < 1.67. This range is likely
to include the actual value of TM/TL given how close αM and
αL are to each other at zero temperature.

The (δτ, T ) CDW phase diagram is found by numerically
minimizing the resulting free energy as a function of each
of the six order parameter components Mi and Li using the
L-BFGS-G algorithm [62] and the SciPy PYTHON library [63],
considering a grid of 300 values of δτ and 400 values of
T at each pressure. In Fig. 8(a), we show the zero-pressure
CDW phase diagram. There are three different possible CDW
phases, which correspond to the three lowest-energy CDW
structures found in DFT. While the zero-temperature CDW
ground state is (M00) + (0LL) (staggered tri-hexagonal) for
any value of δτ , the CDW phase condensed immediately be-
low the highest temperature transition can be either (M00) +
(0LL) or a different phase, namely, (MMM ) + (LLL) (tri-
hexagonal star-of-David) or MMM (planar tri-hexagonal).
Since x-ray experiments find a CDW unit cell that is at
least doubled along the c axis, the (MMM ) phase cannot be
the intermediate phase. Thus, the only scenario that gives
two separate CDW transitions at zero pressure as a func-
tion of temperature, without invoking time-reversal symmetry
breaking, is a transition from an undistorted kagome lat-
tice to the (MMM ) + (LLL) CDW phase, followed by a
lower-temperature transition to the (M00) + (0LL) CDW

FIG. 8. Finite-temperature CDW phase diagrams corresponding
to different choices of the “pure” CDW transition temperatures TM

and TL (dashed black lines) at different pressures. The vertical axis
corresponds to the temperature as a fraction of the average transition
temperature T0 ≡ (TM + TL )/2, whereas the horizontal axis corre-
sponds to the relative temperature δτ ≡ (TM − TL )/(TM + TL ).

phase. This would restrict the parameter δτ to δτ � −0.1.
Moreover, it would be manifested by the breaking of
threefold rotational symmetry below the second CDW tran-
sition [37,39], in qualitative agreement with the experiments
[25,28].

Following the Raman spectroscopy results of Ref. [18], we
set the ratio between the first and second transition tempera-
tures in CsV3Sb5 to be (70 K/94 K) = 75%. Using the phase
diagram at zero pressure, this sets δτ � −0.23, which implies
TM/TL ≈ 0.63 and is indicated by the vertical dotted red line
in Fig. 8. This is to be contrasted with the zero-temperature
DFT result that αM (T = 0)/αL(T = 0) ∼ 0.87. While such a
change in the proximity between the M and L CDW instabil-
ities from zero temperature to finite temperature is possible, a
perhaps more likely scenario would be that one of the transi-
tions involves the condensation of a different order parameter
not captured in our DFT analysis, such as the imaginary CDW
(i.e., loop-current) order parameters discussed, for instance, in
Ref. [46].

The DFT-extracted Landau coefficients in Table I can also
be used to examine the behavior of the CDW phase as both
temperature and pressure are changed simultaneously. As the
quadratic coefficients α become less negative under pressure,
we can expect TM and TL to decrease and the undistorted
kagome phase to become stable at a wider temperature range.
We use a simple parametrization of TM and TL, assuming that
they scale proportionally to the DFT quadratic coefficient at
each finite pressure, such that

TM (P, δτ ) = αM (P)

αM (P = 0)
TM (P = 0, δτ )

and

TL(P, δτ ) = αL(P)

αL(P = 0)
TL(P = 0, δτ ).
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Thus, for a given value of 
 (and thus a particular combina-
tion of TM and TL) at 0 GPa, we can predict the change in
the CDW behavior with pressure by combining TM (P,
) and
TL(P,
) with the finite pressure coefficients found in Table I,
as shown in Figs. 8(b)–8(d). As the pressure increases, the
area associated with the (MMM ) phase rapidly diminishes.
This is consistent with a rapidly suppressed |γM | coefficient
under pressure. The sequence of transitions from undistorted
to (MMM ) + (LLL) and then to (M00) + (0LL) is possible
throughout the studied pressure range. The (M00) + (0LL)
CDW phase remains the lowest-energy low-temperature struc-
ture for all pressures, due to the coefficient γML being
significant even as the quadratic coefficients α approach zero.

IV. CONCLUSIONS

In summary, we performed a detailed first-principles study
of the lattice energetics of the kagome metal CsV3Sb5 by not
only considering different metastable ground-state candidates,
but also extracting the coefficients of the Landau free-energy
expansion. Using this approach, we drew finite-temperature
phase diagrams under pressure, and showed that while a sce-
nario with two lattice transitions is not explicitly inconsistent
with the DFT results, it is not favored by it, because it requires
the second-order coefficients to cross zero at significantly dif-
ferent temperatures. We also performed constrained structural
relaxations to show that while V-only displacements of atoms
lead to an energy lowering, a large portion of the energy
gain is obtained through Sb displacements for all ground-state
candidates. This shows that even though the lattice instability
is driven by V displacements, its collective nature makes the
apical Sb ions essential for understanding the relative stability
of different CDW phases.

It is instructive to compare our results with experiments.
Our finding that the Sb degrees of freedom give an important
contribution to the energetics of the CDW phase is consistent
with the conclusions of Ref. [48], which performed x-ray
absorption experiments in CsV3Sb5. Moreover, our finding
may also be connected to the strong sensitivity of the CDW
transition temperature on the c-axis parameter, as revealed by
Ref. [15]. This is because modifications of the c-axis lattice
parameter promoted by hydrostatic or uniaxial pressure are
expected to particularly impact the apical Sb-ion displace-
ments. This effect, in turn, should also affect the electronic
structure by altering the overlap between the Sb pz orbitals,
which are known to contribute to the Fermi surface pocket
centered at the � point [16,43,47], resulting in an interest-
ing feedback between structural and electronic degrees of
freedom.

Our analysis of the pressure dependence of the CDW phase
reveals that the near degeneracy between the M- and L-point
instabilities, as reflected by their similar quadratic Landau
coefficients, is lifted for high enough pressures. In particular,
there is a range of pressures for which αM becomes positive
while αL remains negative. Yet, the CDW ground state at
these pressures remains the same as the one found at ambient
pressure, namely, the (M00) + (0LL) staggered tri-hexagonal
CDW phase. This highlights the importance of the coupling
between the M and L CDW order parameters in promoting the
CDW instability. Elucidating the microscopic origin of such a
coupling will shed new light on the microscopic mechanism

of the CDW instability. While a purely phononic mechanism
is unlikely [39], our results highlighting the importance of the
Sb degrees of freedom show that a mechanism relying only
on the van Hove singularities arising from the V orbitals may
not be enough either. Taking into account the kz dispersion of
the saddle points that give rise to these van Hove singularities
may be important to capture the coupling between the M and
L CDW orders. Interestingly, one of these saddle points has a
strong spectral weight contribution from the Sb orbitals [47].
Moreover, for finite kz values, bands stemming from van Hove
singularities even cross the Fermi level [16].

Previous experiments have reported evidence for a
pressure-induced transition between two different CDW
phases [21,22], as reflected by the double-peak structure of
the superconducting dome inside the coexistence state with
CDW [4,9,13,59,60]. Our analysis, which extends the findings
first reported by us in Ref. [21], reveals instead that the CDW
ground state remains unchanged as a function of pressure.
While effects not captured by DFT may impact the small
energy differences between the stable CDW states and thus
favor a different ground state, it is also plausible that a distinct
type of charge order is at play, such as the so-called imaginary
CDW, which breaks time-reversal symmetry.

Similarly, there is experimental evidence for two different
CDW transitions as a function of temperature [18,25,28].
Our finite-temperature analysis does find a narrow parameter
regime in which the (M00) + (0LL) staggered tri-hexagonal
CDW ground state is preceded by a transition to the
(MMM ) + (LLL) tri-hexagonal star-of-David CDW phase.
Notwithstanding the rather restrictive conditions in this pa-
rameter range, it is not clear whether this scenario could
explain the experimental observations. The main signature
of the (MMM ) + (LLL) to (M00) + (0LL) transition would
be the breaking of the threefold rotational symmetry of the
kagome lattice. The transport data of Refs. [25,28] is consis-
tent with such a transition, as threefold rotational symmetry
breaking is observed only well below the CDW transition
temperature. On the other hand, the optical data of Ref. [29]
show threefold rotational symmetry being broken at the same
temperature as the onset of CDW. Furthermore, the Raman
data of Ref. [18] are consistent with two CDW transitions be-
tween structures that share the same symmetries. As with the
situation of the pressure-induced CDW-to-CDW transition, it
is also possible that one of the finite-temperature transitions
is related instead to an imaginary charge density wave (i.e.,
loop currents). As discussed above, while the reported μSR
data are characteristic of a time-reversal symmetry-breaking
transition [30,31], there is disagreement on Kerr effect data
[29,33,34]. To shed more light on this issue, it would be in-
teresting to be able to capture such loop-current phases within
a first-principles approach as has been done for CrSiTe3 and
CrGeTe3 in Ref. [64].
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A. M. Oleś, and P. Piekarz, Phys. Rev. B 105, 235134
(2022).

[20] A. Subedi, Phys. Rev. Mater. 6, 015001 (2022).
[21] R. Gupta, D. Das, C. Mielke, E. T. Ritz, F. Hotz, Q. Yin, Z. Tu,

C. Gong, H. Lei, T. Birol, R. M. Fernandes, Z. Guguchia, H.
Luetkens, and R. Khasanov, Commun. Phys. 5, 232 (2022).

[22] H. Li, G. Fabbris, A. Said, J. Sun, Y.-X. Jiang, J.-X. Yin, Y.-Y.
Pai, S. Yoon, A. R. Lupini, C. Nelson et al., Nat. Commun. 13,
6348 (2022).

[23] C. Li, X. Wu, H. Liu, C. Polley, Q. Guo, Y. Wang, X. Han, M.
Dendzik, M. H. Berntsen, B. Thiagarajan et al., Phys. Rev. Res.
4, 033072 (2022).

[24] M. Kang, S. Fang, J. Yoo, B. R. Ortiz, Y. M. Oey, J. Choi, S. H.
Ryu, J. Kim, C. Jozwiak, A. Bostwick et al., Nat. Mater. 22, 186
(2023).

[25] Y. Xiang, Q. Li, Y. Li, W. Xie, H. Yang, Z. Wang, Y. Yao, and
H.-H. Wen, Nat. Commun. 12, 1 (2021).

[26] H. Zhao, H. Li, B. R. Ortiz, S. M. Teicher, T. Park, M.
Ye, Z. Wang, L. Balents, S. D. Wilson, and I. Zeljkovic,
Nature (London) 599, 216 (2021).

[27] H. Li, H. Zhao, B. R. Ortiz, T. Park, M. Ye, L. Balents, Z.
Wang, S. D. Wilson, and I. Zeljkovic, Nat. Phys. 18, 265
(2022).

[28] L. Nie, K. Sun, W. Ma, D. Song, L. Zheng, Z. Liang, P. Wu, F.
Yu, J. Li, M. Shan, D. Zhao, S. Li, B. Kang, Z. Wu, Y. Zhou, K.
Liu, Z. Xiang, J. Ying, Z. Wang, T. Wu et al., Nature (London)
604, 59 (2022).

[29] Y. Xu, Z. Ni, Y. Liu, B. R. Ortiz, Q. Deng, S. D. Wilson, B. Yan,
L. Balents, and L. Wu, Nat. Phys. 18, 1470 (2022).

[30] C. Mielke III, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang,
M. Medarde, X. Wu, H. Lei, J. Chang et al., Nature (London)
602, 245 (2022).

[31] R. Khasanov, D. Das, R. Gupta, C. Mielke III, M. Elender, Q.
Yin, Z. Tu, C. Gong, H. Lei, E. T. Ritz et al., Phys. Rev. Res. 4,
023244 (2022).

[32] M. H. Christensen and T. Birol, Nature (London) 602, 216
(2022).

[33] D. R. Saykin, C. Farhang, E. D. Kountz, D. Chen, B. R. Ortiz,
C. Shekhar, C. Felser, S. D. Wilson, R. Thomale, J. Xia et al.,
arXiv:2209.10570

[34] Y. Hu, S. Yamane, G. Mattoni, K. Yada, K. Obata, Y. Li, Y. Yao,
Z. Wang, J. Wang, C. Farhang et al., arXiv:2208.08036

[35] M. Kang, S. Fang, J.-K. Kim, B. R. Ortiz, S. H. Ryu, J. Kim, J.
Yoo, G. Sangiovanni, D. Di Sante, B.-G. Park et al., Nat. Phys.
18, 301 (2022).

[36] M. M. Denner, R. Thomale, and T. Neupert, Phys. Rev. Lett.
127, 217601 (2021).

[37] T. Park, M. Ye, and L. Balents, Phys. Rev. B 104, 035142
(2021).

[38] Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 104, 045122
(2021).

[39] M. H. Christensen, T. Birol, B. M. Andersen, and R. M.
Fernandes, Phys. Rev. B 104, 214513 (2021).

[40] R. Tazai, Y. Yamakawa, S. Onari, and H. Kontani, Sci. Adv. 8,
eabl4108 (2022).

[41] N. Ratcliff, L. Hallett, B. R. Ortiz, S. D. Wilson, and J. W.
Harter, Phys. Rev. Mater. 5, L111801 (2021).

[42] H. Tan, Y. Liu, Z. Wang, and B. Yan, Phys. Rev. Lett. 127,
046401 (2021).

[43] A. Tsirlin, P. Fertey, B. R. Ortiz, B. Klis, V. Merkl, M. Dressel,
S. Wilson, and E. Uykur, SciPost Phys. 12, 049 (2022).

[44] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz,
G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu et al.,
Nat. Mater. 20, 1353 (2021).

[45] X. Feng, K. Jiang, Z. Wang, and J. Hu, Sci. Bull. 66, 1384
(2021).

205131-11

https://doi.org/10.1103/PhysRevLett.125.247002
https://doi.org/10.1103/PhysRevMaterials.5.034801
https://doi.org/10.1103/PhysRevX.11.031050
https://doi.org/10.1103/PhysRevLett.126.247001
https://doi.org/10.1103/PhysRevMaterials.3.094407
https://doi.org/10.1103/PhysRevX.11.041030
https://doi.org/10.1103/PhysRevB.105.024517
https://doi.org/10.1103/PhysRevB.105.094507
https://doi.org/10.1103/PhysRevB.106.024516
https://doi.org/10.1103/PhysRevB.105.165146
https://doi.org/10.1093/nsr/nwac199
https://doi.org/10.1038/s41567-021-01404-y
https://doi.org/10.1088/0256-307X/38/5/057402
https://doi.org/10.1103/PhysRevB.103.L220504
https://doi.org/10.1103/PhysRevB.104.144506
https://doi.org/10.1103/PhysRevMaterials.6.L041801
https://doi.org/10.1103/PhysRevB.105.195136
https://doi.org/10.1103/PhysRevB.105.155106
https://doi.org/10.1103/PhysRevB.105.235134
https://doi.org/10.1103/PhysRevMaterials.6.015001
https://doi.org/10.1038/s42005-022-01011-0
https://doi.org/10.1038/s41467-022-33995-2
https://doi.org/10.1103/PhysRevResearch.4.033072
https://doi.org/10.1038/s41586-021-03946-w
https://doi.org/10.1038/s41567-021-01479-7
https://doi.org/10.1038/s41586-022-04493-8
https://doi.org/10.1038/s41567-022-01805-7
https://doi.org/10.1038/s41586-021-04327-z
https://doi.org/10.1103/PhysRevResearch.4.023244
https://doi.org/10.1038/d41586-022-00305-1
http://arxiv.org/abs/arXiv:2209.10570
http://arxiv.org/abs/arXiv:2208.08036
https://doi.org/10.1038/s41567-021-01451-5
https://doi.org/10.1103/PhysRevLett.127.217601
https://doi.org/10.1103/PhysRevB.104.035142
https://doi.org/10.1103/PhysRevB.104.045122
https://doi.org/10.1103/PhysRevB.104.214513
https://doi.org/10.1126/sciadv.abl4108
https://doi.org/10.1103/PhysRevMaterials.5.L111801
https://doi.org/10.1103/PhysRevLett.127.046401
https://doi.org/10.21468/SciPostPhys.12.2.049
https://doi.org/10.1038/s41563-021-01034-y
https://doi.org/10.1016/j.scib.2021.04.043


RITZ, FERNANDES, AND BIROL PHYSICAL REVIEW B 107, 205131 (2023)

[46] M. H. Christensen, T. Birol, B. M. Andersen, and R. M.
Fernandes, Phys. Rev. B 106, 144504 (2022).

[47] M. Y. Jeong, H.-J. Yang, H. S. Kim, Y. B. Kim, S. B. Lee, and
M. J. Han, Phys. Rev. B 105, 235145 (2022).

[48] S. Han, C. S. Tang, L. Li, Y. Liu, H. Liu, J. Gou, J. Wu, D. Zhou,
P. Yang, C. Diao et al., Adv. Mater. 35, 2209010 (2023).

[49] Z. Guguchia, C. Mielke III, D. Das, R. Gupta, J.-X. Yin, H. Liu,
Q. Yin, M. Christensen, Z. Tu, C. Gong et al., Nat Commun.
14, 153 (2023).

[50] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[51] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[52] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[53] S. Cho, H. Ma, W. Xia, Y. Yang, Z. Liu, Z. Huang, Z. Jiang, X.

Lu, J. Liu, Z. Liu et al., Phys. Rev. Lett. 127, 236401 (2021).
[54] We use the word “trilinear” to refer to expressions which

involve three different order parameter components to differ-
entiate them from the more common cubic terms such as M3.
This is a more general use of the term than, for example, in the
ferroelectrics community where the word “trilinear” is used to
refer to a combination of three different irreps (∝P1Q1R3, etc.).
For example, see Refs. [65–67].

[55] All numerical fits were performed using the SciPy PYTHON

library. In order to ensure a good fit to the 11 coefficients in
Eqs. (2)–(4), the energies associated with distortions in 13
directions in parameter space were calculated, then simultane-
ously fit using the nonlinear least-squares method. These direc-
tions were selected to ensure that the resulting system of least-
squares normal equations spanned the space of all unknown
coefficients, and consisted of (L00), (LL0), (M00) + (0LL),
(M00) + (LL0), (MM0), (M00), (MM0) + (LL0), (MMM ),
(MMM ) + (L00), (MMM ) + (LLL), (M00) + ( L

2 LL), and
( M

2 00) + (LLL). A Landau free energy including terms up to
fifth order showed no appreciable change in the second- through
fourth-order coefficients. Note that for the 3.50 GPa pressure

data, the M-point phonons are stable (αM > 0), but just barely
so. This makes the energy surface highly sensitive to distortions
of pure M+

1 order, and leads to difficulties in distinguishing
between even-order terms in the energy expansion that involve
M+

1 distortions only. Thus, the quantitative accuracy of αM , uM ,
and λM at this pressure value may be less robust than for other
values in Table I.

[56] D. C. Wallace, Am. J. Phys. 40, 1718 (1972).
[57] H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISODISTORT,

ISOTROPY Software Suite, iso.byu.edu.
[58] H. T. Stokes, D. M. Hatch, B. J. Campbell, and D. E. Tanner,

J. Appl. Cryst. 39, 607 (2006).
[59] F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen,

B. Lei, J. J. Ying, and X. H. Chen, Nat. Commun. 12, 3645
(2021).

[60] Z. Zhang, Z. Chen, Y. Zhou, Y. Yuan, S. Wang, J. Wang, H.
Yang, C. An, L. Zhang, X. Zhu, Y. Zhou, X. Chen, J. Zhou, and
Z. Yang, Phys. Rev. B 103, 224513 (2021).

[61] L. Yu, C. Wang, Y. Zhang, M. Sander, S. Ni, Z. Lu, S. Ma, Z.
Wang, Z. Zhao, H. Chen et al., arXiv:2107.10714.

[62] D. C. Liu and J. Nocedal, Math. Program. 45, 503 (1989).
[63] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,

T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W.
Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R.
Kern, E. Larson, C. J. Carey et al., Nat. Methods 17, 261
(2020).

[64] J. Liu, S. Y. Park, K. F. Garrity, and D. Vanderbilt, Phys. Rev.
Lett. 117, 257201 (2016).

[65] I. Etxebarria, J. M. Perez-Mato, and P. Boullay, Ferroelectrics
401, 17 (2010).

[66] A. T. Mulder, N. A. Benedek, J. M. Rondinelli, and C. J. Fennie,
Adv. Funct. Mater. 23, 4810 (2013).

[67] S. Li and T. Birol, npj Comput. Mater. 6, 168 (2020).

205131-12

https://doi.org/10.1103/PhysRevB.106.144504
https://doi.org/10.1103/PhysRevB.105.235145
https://doi.org/10.1002/adma.202209010
https://doi.org/10.1038/s41467-022-35718-z
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.127.236401
https://doi.org/10.1119/1.1987046
http://iso.byu.edu
https://doi.org/10.1107/S0021889806014075
https://doi.org/10.1038/s41467-021-23928-w
https://doi.org/10.1103/PhysRevB.103.224513
http://arxiv.org/abs/arXiv:2107.10714
https://doi.org/10.1007/BF01589116
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevLett.117.257201
https://doi.org/10.1080/00150191003670325
https://doi.org/10.1002/adfm.201300210
https://doi.org/10.1038/s41524-020-00436-x

